
Adding a HenshinEngine to GEMOC Studio
An experience report

Steffen Zschaler

Department of Informatics, King’s College London

London, UK

szschaler@acm.org

ABSTRACT
Executable DSMLs (xDSMLs) are becoming more popular as a

means of efficiently building domain-specific high-level models

that are testable through simulations. To develop an xDSML, one

needs to provide the abstract and concrete syntax, but also the

operational semantics of the language. GEMOC Studio provides a

language workbench for developing xDSMLs and their associated

tooling. To date, it supports the expression of operational semantics

in a number of imperative formats. GEMOC Studio is intended

to easily support also operational semantics in other formats, but

this idea has so far not been tested. In this paper, I report on my

experience implementing a new execution engine for GEMOC Stu-

dio that allows operational semantics to be expressed declaratively

using graph-transformation rules written in Henshin. I hope that

this experience report helps to (a) explore the current flexibility of

GEMOC Studio and provide insights into areas that may benefit

from refactoring, and (b) give some guidance to others wishing to

develop their own execution engines for GEMOC Studio.

1 INTRODUCTION
Executable modelling languages have been discussed for some time

[9], but recently have seen increased interest through projects such

as GEMOC
1
and MOLIZ

2
. The key idea is that by specifying op-

erational semantics in addition to abstract and concrete syntax,

simulators and other dynamic analysis tools can be easily (and pos-

sibly automatically) derived for these executable domain-specific

modelling languages (xDSMLs).

The key issue, then, is how to specify the operational semantics

for an xDSML. Two different approaches have been taken: (1) Using

imperative definitions—for example added to the abstract syntax

through new operations [1] or by defining fUML-based action-

s—and (2) Using declarative definitions—typically using endogenic

graph-transformation systems (GTSs) [2, 10].

Imperative definitions are close to how programmers think and

can be expressed in languages programmers are already familiar

with (e.g., Kermeta-based languages use Xtend to express individual

operations). However, their imperative nature also makes it more

difficult to reason about the semantics of such languages and to

safely compose different language semantics. The primary means of

composition of languages with imperatively expressed operational

semantics is by a variant of role-based composition [13], but this

cannot easily provide guarantees about semantic preservation.

On the other hand, declarative definitions of operational se-

mantics using graph transformations (e.g., [2, 10]) may be less

immediately intuitive for programmers, but offer strong reasoning

1
http://gemoc.org/

2
http://www.modelexecution.org/?page_id=2

Figure 1: A production-line system model

Figure 2: Henshin rules for PLS-system semantics

opportunities, including giving guarantees for semantics preser-

vation in the face of composition [4]. However, they are currently

somewhat underrepresented in the xDSML literature.

Figure 1 shows an example model in a (toy) language for de-

scribing production-line systems [5]. I show here only the concrete

syntax in a Sirius-based diagram. The language allowsmodelling the

flow of parts (heads, handles, and hammers) through a production-

line system. In Fig. 1, for example, we can see that a handle has

been produced and is currently waiting to be processed by the as-

sembly machine. Figure 2 shows the rules defining the operational

semantics of this language. The two generate. . . rules define

the behaviour of generators, while the assemble rule defines how

hammers are assembled. Finally, rule moveAlong defines how parts

are transferred from conveyors onto trays.

In this paper, I report on my experience building a new execu-

tion engine for the GEMOC Studio [1], a state-of-the-art language

workbench for xDSML development. The resulting implementation

is available on Github
3
. One aim of the GEMOC Studio was to easily

support the integration of different forms of operational seman-

tics, but so far this has only been tested for imperatively defined

semantics. Here, I explore what it takes to extend GEMOC Studio

with support for xDSMLs with GTS-defined semantics. Specifically,

3
https://github.com/szschaler/henshin_xdsmls

http://gemoc.org/
http://www.modelexecution.org/?page_id=2
https://github.com/szschaler/henshin_xdsmls


I report on building a GEMOC HenshinEngine, for semantics ex-

pressed using the popular Henshin graph-transformation tool [11].

Beyond the execution engine itself, I hope that this paper can

make two contributions to the community:

(1) Provide some insights into the current flexibility of GEMOC

Studio and, potentially, some lessons about which areas may

benefit from further refactoring and generalisation; and

(2) Provide some guidance to others integrating new execution

engines for operational semantics expressed in other formats.

The remainder of this paper is structured as follows: In Sect. 2, I

introduce the key elements of the GEMOC-Studio architecture that

are relevant to the introduction of a new execution engine. This

is followed, in Sect. 3, by a description of key aspects of the Hen-

shinEngine implementation and some lessons learned in Sect. 4.

Finally, Sect. 5 concludes the paper.

2 GEMOC STUDIO
GEMOCStudio is a languageworkbench for developing xDSMLs [1].

It provides an interpreter infrastructure that takes a language with

abstract syntax defined in Ecore [6], concrete syntax defined in Sir-

ius [12], and an operational semantics that can be interpreted by one

of the existing execution engines. From this, the infrastructure pro-

vides integration with Eclipse’s launch mechanism so that models

can be executed like other programs. When models are executing,

GEMOC can use Sirius to provide visual animation of execution

progress as well as language-agnostic debug functionality.

GEMOC Studio currently offers execution engines that can in-

terpret language semantics defined in Kermeta, fUML, and a con-

currency coordination language called BCOoL [7]. An execution

engine, essentially, performs the following steps:

(1) Initialise engine, using themodel already pre-loaded by GEMOC

Studio (see below);

(2) Initialise model, if needed—for example to create initial dyna-

mic-state elements; and

(3) Execute individual semantics steps in a loop.

The final step in the execution is the central step. For existing

engines, this invokes a so-called execution-entry point, an oper-

ation of one of the model elements, specially annotated to mark

it as the entry point. This will usually run a loop in which indi-

vidual steps, operations annotated as semantic steps are executed.

For each step, GEMOC inserts some functionality before and af-

ter the step which allow it to trace model execution and provide

additional functionality, including debugging and animation, on

top of the execution. For GTS-based xDSMLs such an entry-point

method does not exist. Instead, we will need to provide our own

interpretation of steps and communicate these to GEMOC Stu-

dio. To this end, we can build on functionality encapsulated in

AbstractSequentialExecutionEngine: before each step is exe-

cuted, we invoke a beforeStepmethod. After each step is executed,

we invoke an afterStep method. These two calls enable GEMOC

Studio to trace model execution as well as offer users control and

allow them to stop execution at any time.

3 CREATING THE HENSHINENGINE
I consider the semantics of a model to be given by a graph grammar

with the model as the starting graph, and the metamodel and the

Algorithm 1 performStep algorithm

1: function findNextMatch

2: rules← semanticRules
3: while rules not empty do
4: rule← remove random element from rules
5: match← find match for rule
6: if match not null then
7: return match
8: return null
9: procedure performStep
10: match← findNextMatch

11: if match not null then
12: beforeStep(match.rule.name)
13: apply match.rule at match
14: afterStep

semantics rules as the graph-transformation system.
4
Thus, any

sequence of rule applications from the starting model is considered

to be a valid trace in the semantics. Such semantics can be non-

deterministic. Non-determinism is useful to represent the degree

of concurrency in our problem: heads and handles are generated

independently of each other, and hammers are produced indepen-

dently of the generators, as long as sufficient numbers of heads and

handles are available.

In my execution engine, I implement these semantics by ex-

ecuting one randomly chosen trace5. As a result, two individual

executions of the same model may produce different results.

Deciding which rule to apply is a two-stage process: we first

randomly pick a rule and then we pick a random match for this rule

in the current model. An arbitrarily picked rule may well not have a

match in the current model, so we need to know about rule matches

before picking rules. Checking whether a rule matches is, however,

the computationally hard part of graph transformation, so we want

to do as little as possible of it. The easiest solution would be to

hand all of this work to Henshin, by asking the matching engine

to try to apply a randomly chosen rule: if the application succeeds

a step has been taken and we move on. Otherwise, we randomly

pick a different rule to try. If none of the rules can be applied, the

execution stops. In the process, we make use of Henshin’s capability

for non-deterministic matching, which ensures we get a different

match for rules with multiple matches at every execution.

However, GEMOC Studio requires a step operation name before
executing a step

6
. With the above naïve implementation, we can

only provide a generic name, such as ‘invokeRule’ as we do not

yet know which rule will be invoked. We solve this by splitting the

processing of a single step into two sub-steps: (1) determine the

rule and (non-deterministic) match to apply; (2) apply the identified

match. We then call beforeStep between these two sub-steps and

can thus provide more precise tracing information. Algorithm 1

shows a summary of the core execution-engine behaviour.

The current launch infrastructure of GEMOC Studio assumes

Melange-defined languages [3]. Melange only supports a limited

4
A graph grammar defines a language of graphs from a starting graph and a graph-

transformation system. Any graph reachable from the starting graph is considered

part of the language.

5
See the discussion in Sect. 5 for other options

6
In the call to the beforeStep operation



number of ways in which language-semantics are defined, all of

them imperative in nature. As a result, I had to create my own

launcher, which takes a model and a set of Henshin rules as input.

4 LESSONS LEARNED
In this paper, I have reported on a deep embedding of GTS-based

semantics into GEMOC Studio. An alternative would have been

to create a shallow embedding, reusing the existing K3 engine,

which expects the semantics to be expressed as operations on the

meta-model. Our execution entry point could have been an oper-

ation that invokes the performStep operation in an infinite loop.

performStep would look like the operation above except for the

beforeStep and afterStep calls. Instead, the operation would

have been annotated as a @Step. The obvious advantage of such
a shallow embedding is that it can completely reuse the imple-

mentation of existing execution engines and launch infrastructure.

However, a shallow embedding also means that the actual semantics

become a second-class citizen, only indirectly loaded and referenced

from a K3-based ‘meta-semantics’. As a result, details of the seman-

tics, such as rule names become more difficult to report to the wider

GEMOC infrastructure, which only sees the K3 semantics. This

creates problems when debugging models and recording traces.

More importantly, it would create challenges when later trying to

provide more dedicated support based on the specific semantics

expression, such as advanced support for concurrency and analysis.

Implementing and integrating this new execution engine into

GEMOC Studio has highlighted some areas of difficulty, where

GEMOC Studio may benefit from some additional refactoring:

(1) Assumption of operations-based semantics. GEMOC has a built-

in assumption that all semantics are defined through operations

on the meta-model. For every step, GEMOC logs the name of a

meta-class and meta-operation that was ‘executed’. These infor-

mation are, for example, exposed to the user in the generic debug

interface. Rule-based semantics do not have meta-operations.

Instead, these need to be mocked up when tracing a step. This

may cause problems, in particular where some operations exist

and their names (perhaps accidentally) overlap with rule names.

(2) Inflexible launch infrastructure. The current launcher infras-

tructure is tightly linked in with Melange-based language def-

initions. For languages that are not defined in Melange, it is

necessary to implement a new launcher and launch configura-

tion. Unfortunately, the Melange-dependent and independent

launcher code is not well separated and reusable, which leads

to code cloning in any new launchers.

Overall, integrating the Henshin engine has been surprisingly

straightforward: the core engine consists of only 2 classes with a

total of 268 LOC Xtend code. Infrastructure made up the bulk of

the code: 567 LOC of Xtend and Java code over 6 classes
7
imple-

ment the launcher infrastructure; only 2 classes provide bespoke

behaviour. There are some 47 LOC of configuration data. Including

investigating parts of the GEMOC-Studio sources in depth to iden-

tify appropriate hooks for extension, the engine was developed in

a week. While improvements are still clearly possible, I consider

this a reasonable amount of effort to spend on a task that will not

need to be repeated for every new language.

7
Some copied from existing code in GEMOC Studio because of export settings

5 CONCLUSIONS
I have integrated a new execution engine for Henshin-based lan-

guage semantics into GEMOCStudio. Overall, the claim that GEMOC

Studio is easy to extend has been upheld. Developers of new ex-

tensions can choose between deep embeddings (by developing a

new execution engine, as shown here) or shallow embeddings (by

encoding the interpretation of semantics in a K3-based semantics).

Some areas of the GEMOC-Studio framework are currently still

tightly coupled to languages whose operational semantics are de-

fined using operations on the meta-model, and where the language

definition can be expressed in Melange. Refactoring these areas of

GEMOC Studio would substantially increase the ease with which

new execution engines can be integrated.

Language semantics expressed as a GTS are inherently non-

deterministic, typically, capturing concurrent execution. Latombe et

al. [8] describe support for concurrent semantics in GEMOC. In fu-

ture work, I intend to build on this for a new version of the Henshin

Engine. Support for concurrent execution is less well abstracted in

GEMOC Studion and, therefore, more difficult to reuse and extend.

Latombe [8] introduces a separate specification of the concurrency

model of a language. Such a concurrency model is very useful for

further analysis and efficient execution. With a GTS-based seman-

tics it should be possible to infer the concurrency model instead. I

hope to explore this in future work. Additionally, I would like to

extend the current Henshin Engine to support timed rules in a sim-

ilar fashion to e-Motions [10], which would open up opportunities

for building bespoke advanced analysers for high-level, domain-

specific models. Finally, I will explore supporting more complex

operational semantics that use rule scheduling (called units in Hen-

shin). This creates challenges around identifying execution steps

and larger-scale rollback.

REFERENCES
[1] E Bousse, T Degueule, et al. 2016. Execution framework of the GEMOC studio

(tool demo). In SLE’16.
[2] A Corradini, R Heckel, and U Montanari. 2000. Graphical Operational Semantics.

In Workshop on Graph Transformation and Visual Modelling Techniques.
[3] T Degueule, B Combemale, et al. 2015. Melange: A Meta-language for Modular

and Reusable Development of DSLs. In SLE’15. https://doi.org/10.1145/2814251.
2814252

[4] F Durán, A Moreno-Delgado, et al. 2017. Amalgamation of Domain Specific

Languages with Behaviour. JLAMP 86 (Jan. 2017). Issue 1. https://doi.org/10.

1016/j.jlamp.2015.09.005

[5] F Durán, S Zschaler, and J Troya. 2013. On the Reusable Specification of Non-

functional Properties in DSLs. In SLE’12 (LNCS), Vol. 7745.
[6] IBM. 2006. Ecore API Documentation. http://download.eclipse.org/modeling/

emf/emf/javadoc/2.4.0/org/eclipse/emf/ecore/package-summary.html. (2006).

[7] M. E. Vara Larsen, J. DeAntoni, et al. 2015. A Behavioral Coordination Opera-

tor Language (BCOoL). In MODELS’15. https://doi.org/10.1109/MODELS.2015.

7338249

[8] F Latombe, X Crégut, et al. 2015. Weaving concurrency in executable domain-

specific modeling languages. In SLE’15. 125–136. https://doi.org/10.1145/2814251.
2814261

[9] S. Mellor and M. Balcer. 2002. Executable UML: A Foundation for Model-Driven
Architecture. Addison Wesley.

[10] J Rivera, F Durán, and A Vallecillo. 2009. A graphical approach for modeling

time-dependent behavior of DSLs. In VL/HCC’09. https://doi.org/10.1109/VLHCC.
2009.5295300

[11] D Strüber, K Born, et al. 2017. Henshin: A Usability-Focused Framework for EMF

Model Transformation Development. In ICGT’17.
[12] V. Viyović, M. Maksimović, and B. Perisić. 2014. Sirius: A rapid development of

DSM graphical editor. In INES’14. https://doi.org/10.1109/INES.2014.6909375
[13] C Wende, N Thieme, and S Zschaler. 2010. A Role-Based Approach towards

Modular Language Engineering. In SLE’09 (LNCS), Vol. 5969. https://doi.org/10.
1007/978-3-642-12107-4_19

https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1016/j.jlamp.2015.09.005
http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.0/org/eclipse/emf/ecore/package-summary.html
https://doi.org/10.1109/MODELS.2015.7338249
https://doi.org/10.1109/MODELS.2015.7338249
https://doi.org/10.1145/2814251.2814261
https://doi.org/10.1145/2814251.2814261
https://doi.org/10.1109/VLHCC.2009.5295300
https://doi.org/10.1109/VLHCC.2009.5295300
https://doi.org/10.1109/INES.2014.6909375
https://doi.org/10.1007/978-3-642-12107-4_19
https://doi.org/10.1007/978-3-642-12107-4_19

	Abstract
	1 Introduction
	2 GEMOC Studio
	3 Creating the HenshinEngine
	4 Lessons learned
	5 Conclusions
	References

